En una nueva investigación publicada en Lancet Digital Health se describe un nuevo modelo de inteligencia artificial (IA) que agrupa los patrones de síntomas típicos de la enfermedad de Parkinson. Lo que más destaca es que también predice la progresión de estos síntomas en términos de tiempo y gravedad, aprendiendo de los datos longitudinales del paciente.
En ese sentido, se suele tener la creencia de que esta enfermedad es exclusiva de la vejez pero no es así. Uno de los casos mundiales más populares es el de Michael J. Fox, actor que personificó a Marty McFly en las icónicas películas “Back to the Future”. En 1998 anunció que tenía Parkinson y el diagnóstico lo recibió cuando tenía 29 años.
A partir de entonces la compañía Fox lanzó la Fundación Michael J. Fox para la Investigación del Parkinson (MJFF). Su objetivo es ayudar a buscar tratamientos y una cura para esta enfermedad que se estima afecta a más de seis millones de personas en todo el mundo.
Trabajos recientes sobre el tema
Desde entonces, el equipo de neurocientíficos y estrategas de MJFF trabaja codo a codo con investigadores de ciencia y tecnología, médicos, aliados de la industria y pacientes de todo el mundo para financiar las investigaciones más prometedoras, a fin de comprender y hallar mejores tratamientos para la enfermedad. En julio de 2018, la Fundación e IBM Research anunciaron una alianza única con el objetivo de aplicar el aprendizaje automático para promover mayores avances científicos.
Esta colaboración alcanzó un importante hito. En el último trabajo publicado por el equipo de IBM junto con científicos de MJFF en Lancet Digital Health, se detalla un nuevo modelo de IA que agrupa los patrones de síntomas típicos de la enfermedad de Parkinson. El modelo también predice la progresión de estos síntomas en términos de tiempo y gravedad, aprendiendo de lo que se conoce como datos longitudinales del paciente, es decir, descripciones del estado clínico de un paciente recopiladas a lo largo del tiempo.
El objetivo es utilizar la IA para contribuir a la gestión y el diseño de ensayos clínicos. Estas metas son importantes porque, pese a la prevalencia de Parkinson, los pacientes experimentan una variedad única de síntomas, tanto motores como no motores.
Se espera que el uso de machine learning para aprender de grandes cantidades de datos de pacientes permita a los médicos e investigadores contar con una nueva herramienta para predecir mejor la progresión notoriamente variable de los síntomas en pacientes individuales de Parkinson. Asimismo, que ello permita gestionar y tratar la enfermedad de manera más efectiva, y que dé lugar a la posibilidad de identificar a los mejores candidatos para ensayos clínicos que sean más específicos y efectivos.
Poner la IA a trabajar
Los resultados son el siguiente paso de una investigación publicada anteriormente. Ese trabajo se enfocó en desarrollar un método para algunos de los desafíos únicos de las aplicaciones para la atención de la salud, entre ellas, permitir predicciones personalizadas y dar cuenta de los efectos de los medicamentos en las mediciones de síntomas.
Nuevos conocimientos sobre la progresión de la enfermedad
Estas decisiones de modelado han permitido a los investigadores obtener más información sobre los estados de la enfermedad y las vías de progresión. Los resultados sugieren que el estado de un paciente puede variar en una serie de factores, como la capacidad para realizar actividades cotidianas; problemas relacionados con la lentitud motriz, el temblor y la inestabilidad postural; así como síntomas no motores, entre ellos, depresión, ansiedad, deterioro cognitivo y trastornos del sueño.
Los resultados apoyan la hipótesis de que existen diversas vías de progresión, tal como lo indican las numerosas trayectorias de enfermedades que se han estudiado. Sin embargo, el modelo de IA aún puede realizar predicciones precisas. Debido a que el modelo se nutre de un conjunto de datos, ha podido predecir con éxito un estado avanzado de la enfermedad de Parkinson asociado con resultados como la demencia y la incapacidad para caminar sin asistencia.
Debido a la diversidad de experiencias en la enfermedad de Parkinson, se espera que, al permitir este tipo de predicciones, el modelo pueda ayudar con la gestión y proporcionar criterios de inclusión y definición de resultados más específicos durante el diseño del ensayo clínico.